B.Sc. Part II Examination 2020 Sir Gurudas Mahavidyalaya

Physics Honours (PHSA)

Paper III

Time: 2Hrs Full Marks: 50

Answer question No. 1 and any four from the rest

- 1. ANSWER ANY **FIVE** OF THE FOLLOWING QUESTIONS 2x5=10
- (a) Distinguish between combinational and sequential logic circuits.
- (b) A point charge 'q' is placed symmetrically at a distance 'd' from two perpendicularly placed grounded conducting infinite plates. Calculate the net force F on the charge 'q'.
- (c) What is amplitude modulation?
- (d) What is eddy current?
- (e) State Biot-Savart law.
- (f) Two coils have self inductances L_1 and L_2 and mutual inductance M. Show that M^2 is less than or equal to L_1L_2 .
- (g) What is the difference between Fresnel and Fraunhofer class of diffraction?
- (h) What is Brewster's law?
- 1. (a) Define the quantity Common Mode Rejection Ratio (ρ) for a Differential Amplifier.
- (b) For a Differential Amplifier if v_1 and v_2 are the input signals, then show that the output signal v_0 is given by:
 - $V_o = A_d v_d (1 + v_c / \rho v_d)$, where v_d is the difference voltage and v_c is the common mode signal and A_d is the gain of the Differential Amplifier.

- (c) consider the situation referred to above, where in the first set of signals v_1 is +50 microvolt and v_2 is -50 microvolt and in the second set v_1 is 1050 microvolt and v_2 is 950 microvolt. If CMRR(ρ) is 10,000, calculate the percentage difference in the output voltage obtained for the two sets of input signals. 2+4+4
- 2. (a) show that negative feedback improves the stability of an amplifier.
- (b) Draw a clocked S-R flip flop circuit using two input NAND gates and explain its operation with proper state table.

 4+3+3
- 3. (a) What is magnetic dipole moment?
- (b) What is its (approximate) magnetic field at points far from the origin?
- (c) what do you mean by free current and bound current? 2+4+(2+2)
- 4. (a) What is the differential form of Gauss's law? Apply this law to calculate the electric field in case of charged infinite plane.
- (b) Find the self inductance per unit length of a long solenoid of radius r, carrying n turns per unit length. (2+3)+4
- 5. (a) In the Newton's ring arrangement write down the conditions of maxima and minima for both the reflected and transmitted light. Compare these two fringes.
- (b) Newton's rings are formed between a spherical lens surface and an optical flat. If the tenth bright ring of green light(546.1nm) is 7.89nm in diameter, what is the radius of curvature of the lens surface?

 5+5
- 6. (a) Distinguish between single slit and double slit diffraction pattern.
- (b) State and explain Rayleigh criterion of resolution.
- (c) Explain the phenomenon of double refraction in a uniaxial crystal by applying Hygen's theory.

 3+3+4